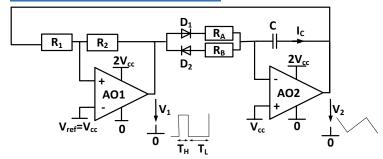
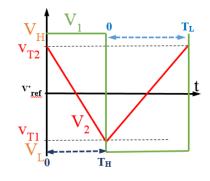
Ex 1 Générateur de signaux



a. Donner l'équation de V_{T1} (seuil de basculement de V_H à V_L) et de V_{T2} (seuil de basculement de V_L à V_H) en fonction de R₁ et R₂.

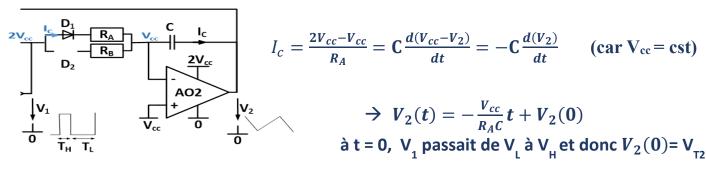
AO1 est monté en comparateur non-inverseur avec $V_{réf} = V_{cc}$, $V_H = 2Vcc$ (alim positive de AO1) et $V_L = 0V$ (alim négative de AO1) ce qui donne :

$$\begin{split} V_{ref}' &= V_{ref} \frac{R_2 + R_1}{R_2} = V_{cc} \frac{R_2 + R_1}{R_2} \\ V_{T1} &= V_{ref} \frac{R_2 + R_1}{R_2} - V_H \frac{R_1}{R_2} = \frac{R_2 - R_1}{R_2} V_{cc} \end{split}$$

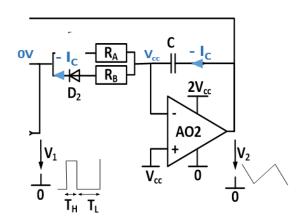


et
$$V_{T2} = V_{ref} \frac{R_2 + R_1}{R_2} - V_L \frac{R_1}{R_2} = \frac{R_2 + R_1}{R_2} V_{cc}$$

- a- Donner les équations de $V_2(t)$ quand $V_1 = 2 V_{CC}$ (D_2 bloquée) et quand $V_1 = 0$ (D_1 bloquée).
- \triangleright Quand la sortie du comparateur V_1 est à $V_H = 2V_{cc}$ (la tension v- de OA2 étant tjrs à Vcc) c'est la diode D_1 qui est passante ($V_{anode} > V_{cathode}$). La capacité se charge donc à travers R_A et le schéma devient:



 \triangleright Quand la sortie du comparateur V_1 est à $V_L = 0$ (la tension V- de OA2 étant tjrs à Vcc) c'est la diode D2 qui est passante ($V_{anode} > V_{cathode}$). La capacité se décharge donc à travers R_B et le schéma devient:



$$-I_c = \frac{V_{cc} - \mathbf{0}}{R_R} = \mathbf{C} \frac{d(V_2 - V_{cc})}{dt} = \mathbf{C} \frac{d(V_2)}{dt}$$

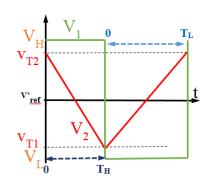
à t = 0, V_1 passait de V_H à V_L et donc $V_2(0) = V_{T1}$

V_2 (t) Pour $V_1 = +2V_{CC}$	$V_{T2} - \frac{V_{cc}}{CR_A}t = \frac{R_2 + R_1}{R_2}V_{cc} - \frac{V_{cc}}{CR_A}t$
$V_2(t)$ Pour $V_1 = 0$ V	$V_{T1} + \frac{V_{cc}}{CR_B}t = \frac{R_2 - R_1}{R_2}V_{cc} + \frac{V_{cc}}{CR_B}t$

b- Etablir les expressions de la période T et du rapport cyclique (T_H/T).

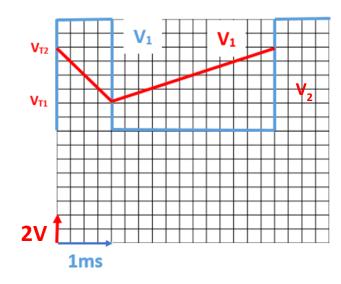
Pour
$$V_1 = +2V_{CC}$$
 et à $t = T_H \rightarrow V_2(T_H) = V_{T1} = V_{T2} - \frac{V_{cc}}{CR_A}T_H$
Pour $V_1 = 0$ V et à $t = T_L \rightarrow V_2(T_L) = V_{T2} = V_{T1} + \frac{V_{cc}}{CR_B}T_L$

Avec
$$V_{T2} - V_{T1} = \Delta V_T = \frac{2V_{cc}R_1}{R_2}$$
 et donc $T_H = \frac{2V_{cc}R_1}{R_2} \frac{CR_A}{V_{cc}}$ et $T_L = \frac{2V_{cc}R_1}{R_2} \frac{CR_B}{V_{cc}}$

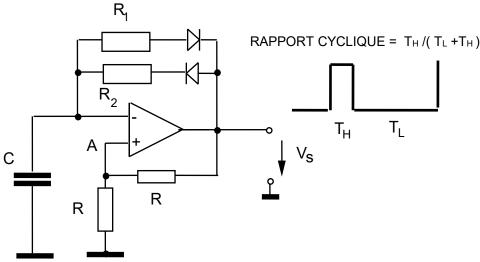


$$T = T_H + T_L = \frac{(R_A + R_B)C\Delta V_T}{V_{CC}} = \frac{(R_A + R_B)2CR_1}{R_2} \text{ et } T_H/T = \frac{R_A}{(R_A + R_B)}$$

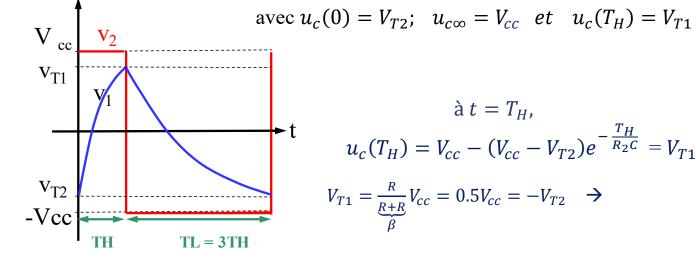
c- Représenter V_1 et V_2 dans le cas particulier ou $V_{CC} = 4$ [V], $R_2 = 2R_1$ et $R_B = 3R_A$ et T = 4 [ms].



Ex 2 Bascule Astable



$$u_c(t) = u_{c\infty} - \left(u_{c\infty} - u_c(0)\right)e^{-\frac{t}{\tau}}$$

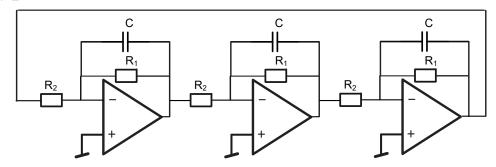


$$T_{H} = R_{2}C \ln\left(\frac{1+\beta}{1-\beta}\right) = R_{2}C \ln(3) = \frac{T_{L}}{3} = \frac{1}{3}R_{1}C \ln(3)$$

$$R_{1} = 3 R_{2} \text{ et } T = T_{H} + T_{L} = 4 R_{2}C \ln(3) = \left(\frac{1}{F}\right) = 10^{-4}s$$

Exemple d'implémentation : $R_1 = 10k\Omega$; $R_2 = 3.3k\Omega$; C = 6.9 nF.

Ex 3 Oscillateur 1



Gain en boucle ouverte :

$$A\beta(j\omega) = \left(\frac{A_0}{1 + j\frac{\omega}{\omega_p}}\right)^3 \ avec \ A_0 = -\frac{R_1}{R_2} \ et \ \omega_p = \frac{1}{R_1C}$$

Rq : En général, on n'a pas besoin de distinguer A de β puis que le critère d'oscillation de Barkhausen concerne le produit $\mathbf{A}\mathbf{\beta}$ (c.à.d. $\underline{A}(j\omega)\mathbf{\beta}(j\omega)=1$)

La pulsation d'oscillation ω_o est donnée par la deuxième condition d'oscillation:

$$Arg(A\beta (j\omega_o)) = 0 \ modulo \ 2\pi.$$

On sait que $Arg(A_0) = \pi$ ($car A_0 < 0$), on peut donc écrire :

$$Arg\left(A\beta\left(j\omega_{0}\right)\right) = Arg\left(\frac{A_{0}}{1+j\frac{\omega}{\omega_{p}}}\right)^{3} = 3 Arg(A_{0}) - 3 Arg\left(1+j\frac{\omega_{o}}{\omega_{p}}\right) = 0 \text{ ou } 2\pi$$

$$\rightarrow Arg(A_{0}) - Arctg\left(\frac{\omega_{o}}{\omega_{p}}\right) = 0 \text{ ou } \frac{2\pi}{3} \rightarrow Arctg\left(\frac{\omega_{o}}{\omega_{p}}\right) = \pi \text{ ou } \frac{\pi}{3}$$

solution 1: $\left(\frac{\omega_o}{\omega_p}\right) = tg(\pi) = 0 \rightarrow \omega_o = 0 \text{ (signal continue} \rightarrow \text{solution non acceptable)}$

solution 2:
$$\left(\frac{\omega_o}{\omega_p}\right) = tg\left(\frac{\pi}{3}\right) = \sqrt{3}$$
 (solution acceptable)

D'où la pulsation d'oscillation $\omega_o = \sqrt{3} \; \omega_p = rac{\sqrt{3}}{R_1 c}$

De plus la deuxième condition d'oscillation : $|A\beta (j\omega_o)| = 1$ donne :

$$\left| \frac{A_0}{1 + j\sqrt{3}} \right| = 1 \rightarrow |A_0| = \frac{R_1}{R_2} = 2$$

$$\rightarrow \mathbf{R_1} = \mathbf{2} \mathbf{R_2}$$